Automatic Video Captioning using Deep Neural Network
نویسندگان
چکیده
Video understanding has become increasingly important as surveillance, social, and informational videos weave themselves into our everyday lives. Video captioning offers a simple way to summarize, index, and search the data. Most video captioning models utilize a video encoder and captioning decoder framework. Hierarchical encoders can abstractly capture clip level temporal features to represent a video, but the clips are at fixed time steps. This thesis research introduces two models: a hierarchical model with steered captioning, and a Multi-stream Hierarchical Boundary model. The steered captioning model is the first attention model to smartly guide an attention model to appropriate locations in a video by using visual attributes. The Multi-stream Hierarchical Boundary model combines a fixed hierarchy recurrent architecture with a soft hierarchy layer by using intrinsic feature boundary cuts within a video to define clips. This thesis also introduces a novel parametric Gaussian attention which removes the restriction of soft attention techniques which require fixed length video streams. By carefully incorporating Gaussian attention in designated layers, the proposed models demonstrate state-of-the-art video captioning results on recent datasets.
منابع مشابه
Spatio-Temporal Attention Models for Grounded Video Captioning
Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that relies on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video da...
متن کاملAutomated Image Captioning Using Nearest-Neighbors Approach Driven by Top-Object Detections
The significant performance gains in deep learning coupled with the exponential growth of image and video data on the Internet have resulted in the recent emergence of automated image captioning systems. Two broad paradigms have emerged in automated image captioning, i.e., generative model-based approaches and retrieval-based approaches. Although generative model-based approaches that use the r...
متن کاملChanges on the Horizon for the Multimedia Community
The Impact of Deep Learning The development of AI algorithms, represented by deep learning, has bolstered multimedia research. In particular, deep learning has led to a multimodality-based algorithm framework, enabling the effective fusion and use of cross-domain data. Take image and video captioning, for example. A couple of years ago, tagging was the only way to describe images and videos. Bu...
متن کاملVideo to Text Summary: Joint Video Summarization and Captioning with Recurrent Neural Networks
Video summarization and video captioning are considered two separate tasks in existing studies. For longer videos, automatically identifying the important parts of video content and annotating them with captions will enable a richer and more concise condensation of the video. We propose a general neural network configuration that jointly considers two supervisory signals (i.e., an image-based v...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کامل